Inhibiting Glycan Degradation Prevents HIV-Induced Inflammaging and Cognitive Impairment
Abstract
Cognitive impairment is a frequent outcome of chronic viral infections linked to premature aging, including HIV. The mechanisms underlying this decline remain poorly understood. Here, we identify pro-inflammatory glycan degradation, characterized by loss of sialic acid and galactose, alterations that are hallmarks of premature aging, as key contributors to HIV-associated cognitive impairment (HIV-CI). In two independent cohorts of people living with HIV, these degradative changes were enriched in individuals with cognitive impairment, particularly females, and correlated with worse cognitive performance. In both a humanized mouse model of HIV and Eco-HIV, a complementary model that allows behavioral testing, pharmacological inhibition of glycan degradation with sialidase inhibitors prevented virally induced inflammation, immune activation, accelerated aging, and memory deficits. These findings implicate glycan degradation as a contributor to inflammation and cognitive impairment in HIV and highlight glycan-preserving therapies as a promising strategy to mitigate inflammation, premature aging, and cognitive decline during viral infections.
Related articles
Related articles are currently not available for this article.