Advanced Deep Learning Architecture for the Early and Accurate Detection of Autism Spectrum Disorder Using Neuroimaging

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Autism Spectrum Disorder (ASD) is a neurological condition that affects the brain, leading to challenges in speech, communication, social interaction, repetitive behaviors, and motor skills. This research aims to develop a deep learning based model for the accurate diagnosis and classification of autistic symptoms in children, thereby benefiting both patients and their families. Existing literature indicates that classification methods typically analyze region based summaries of Functional Magnetic Resonance Imaging (fMRI). However, few studies have explored the diagnosis of ASD using brain imaging. The complexity and heterogeneity of biomedical data modeling for big data analysis related to ASD remain unclear. In the present study, the Autism Brain Imaging Data Exchange 1 (ABIDE-1) dataset was utilized, comprising 1,112 participants, including 539 individuals with ASD and 573 controls from 17 different sites. The dataset, originally in NIfTI format, required conversion to a computer-readable extension. For ASD classification, the researcher proposed and implemented a VGG20 architecture. This deep learning VGG20 model was applied to neuroimages to distinguish ASD from the non ASD cases. Four evaluation metrics were employed which are recall, precision, F1-score, and accuracy. Experimental results indicated that the proposed model achieved an accuracy of 61%. Prior to this work, machine learning algorithms had been applied to the ABIDE-1 dataset, but deep learning techniques had not been extensively utilized for this dataset and the methods implied in this study as this research is conducted to facilitate the early diagnosis of ASD.

Related articles

Related articles are currently not available for this article.