Predicting coronary artery abnormalities in Kawasaki disease: Model development and external validation
Abstract
Background: Kawasaki disease (KD) is an acute, pediatric vasculitis associated with coronary artery abnormality (CAA) development. Echocardiography at month 1 post-diagnosis remains the standard for CAA surveillance despite limitations, including patient distress and increased healthcare burden. With declining CAA incidence due to improved treatment, the need for routine follow-up imaging is being reconsidered. This study aimed to develop and externally validate models for predicting CAA development and guide the need for echocardiography. Methods: This study used two prospective multicenter Japanese registries: PEACOCK for model development and internal validation, and Post-RAISE for external validation. The primary outcome was CAA at the month 1 follow-up, defined as a maximum coronary artery Z score (Zmax) ? 2. Twenty-nine clinical, laboratory, echocardiographic, and treatment-related variables obtained within one week of diagnosis were selected as predictors. The models included simple models using the previous Zmax as a single predictor, logistic regression models, and machine learning models (LightGBM and XGBoost). Their discrimination, calibration, and clinical utility were assessed. Results: After excluding patients without outcome data, 4,973 and 2,438 patients from PEACOCK and Post-RAISE, respectively, were included. The CAA incidence at month 1 was 5.5% and 6.8% for the respective group. For external validation, a simple model using the Zmax at week 1 produced an area under the curve of 0.79, which failed to improve by more than 0.02 after other variables were added or more complex models were used. Even the best-performing models with a highly sensitive threshold failed to reduce the need for echocardiography at month 1 by more than 30% while maintaining the number of undiagnosed CAA cases to less than ten. The predictive performance declined considerably when the Zmax was omitted from the multivariable models. Conclusions: The Zmax at week 1 was the strongest predictor of CAA at month 1 post-diagnosis. Even advanced models incorporating additional variables failed to achieve a clinically acceptable trade-off between reducing the need for echocardiography and reducing the number of undiagnosed CAA cases. Until superior predictors are identified, echocardiography at month 1 should remain the standard practice.
Related articles
Related articles are currently not available for this article.