Hyperspectral image analysis for classification of multiple infections in wheat

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Plant diseases can cause heavy yield losses in arable crops resulting in major economic losses. Effective early disease recognition is paramount for modern large-scale farming. Since plants can be infected with multiple concurrent pathogens, it is important to be able to distinguish and identify each disease to ensure appropriate treatments can be applied. Hyperspectral imaging is a state-of-the art computer vision approach, which can improve plant disease classification, by capturing a wide range of wavelengths before symptoms become visible to the naked eye. Whilst a lot of work has been done applying the technique to identifying single infections, to our knowledge, it has not been used to analyse multiple concurrent infections. In this study, we investigated three wheat pathogens (yellow rust, mildew and Septoria), cultivating co-occurring infections, resulting in a dataset of 1,447 hyperspectral images of single and double infections on wheat leaves. We used this dataset to train four disease classification algorithms (based on four neural network architectures: Inception and EfficientNet with either a 2D or 3D convolutional layer input). The highest accuracy was achieved by EfficientNet with a 2D convolution input with 81% overall classification accuracy, including an 72% accuracy for detecting a combined infection of yellow rust and mildew. Moreover, we found that hyperspectral signatures of a pathogen depended on whether another pathogen was present, raising interesting questions about co-existence of several pathogens on one plant host. Our work demonstrates that the application of hyperspectral imaging and deep learning is promising for classification of multiple infections in wheat, even with a relatively small training dataset, and opens opportunities for further research in this area.

Related articles

Related articles are currently not available for this article.