Artemisia Database: A Comprehensive Resource for Gene Expression and Functional Insights inArtemisia annua

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Artemisia annuais renowned for producing artemisinin, a compound that revolutionized malaria treatment and holds therapeutic promise for other diseases, including cancer and diabetes. However, low natural yields of artemisinin remain a major bottleneck, necessitating a deeper understanding of the genetic and regulatory networks involved in its biosynthesis. Although several transcriptomic studies onA. annuaexist, they are often limited in scope, and a comprehensive, tissue-resolved gene expression resource has been lacking. Here, we present the Artemisia Database (Artemisia-DB)—a high-resolution expression atlas constructed from an extensive integration of publicly available RNA-seq datasets. The database provides transcript- and gene-level abundance estimates across major tissues and includes functional annotations such as Gene Ontology (GO) terms, KEGG pathways, and InterPro domains. As a case study, we investigated the coexpression profile of HMGR (3-hydroxy-3-methylglutaryl- CoA reductase), a key enzyme in the mevalonate pathway and an early step in artemisinin biosynthesis. Coexpression analysis in leaf tissue revealed a subset of Auxin Response Factor (ARF) transcription factors strongly correlated to HMGR. This finding suggests a potential regulatory link between auxin signaling and artemisinin biosynthesis, providing new hypotheses for functional validation. Artemisia-DB is freely accessible at<ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://artemisia-db.com">https://artemisia-db.com</ext-link>and offers an interactive interface for exploring expression data, functional annotations, transcription factors, CRISPR targets, and more. By combining high-quality transcriptome data with regulatory and functional insights, Artemisia-DB serves as a valuable resource for the plant research community and facilitates deeper investigation into the transcriptional dynamics and specialized metabolism ofA. annua.

Related articles

Related articles are currently not available for this article.