Aggregation-Dependent Epitope Sequence and Modification Fingerprints of Anti-Aβ Antibodies
Abstract
A hallmark of Alzheimer’s disease (AD), the most common form of dementia, is the progressive accumulation of amyloid-beta (Aβ) peptides across distinct brain regions. Anti-Aβ antibodies (Aβ-Abs) targeting specific Aβ variants are essential tools for AD research, diagnostics, and therapy. The monoclonal antibodies Aducanumab, Lecanemab, and Donanemab have recently been approved as the first disease-modifying treatments for early AD, highlighting the clinical importance of their exact binding profiles.
In this study, we systematically characterized the binding and modification requirements of 20 Aβ-Abs, including biosimilars of Aducanumab, Lecanemab, and Donanemab, across monomeric, oligomeric, and aggregated Aβ forms. Array-based analysis of 20,000 modified Aβ peptides defined binding epitopes at single-residue resolution and revealed the impact of sequence variation, including familial AD mutations, as well as diverse post-translational modifications (PTMs). Notably, genetic variants such as H6R impaired binding of therapeutic Aβ-Abs like Aducanumab. Donanemab showed strong preference for pyroglutamate-modified AβpE3–10, while Lecanemab and Aducanumab exhibited aggregation- and sequence-context-dependent binding requirements.
Comparison of peptide binding profiles with binding of full-length and aggregated Aβ via immunoprecipitation-mass spectrometry, capillary immunoassays, Western blotting, and immunohistochemistry on AD brain tissue revealed distinct aggregation-dependent binding behaviours. The valency- and context-dependence of Aducanumab binding, together with its preference for Ser8-phosphorylated Aβ, supports a dimerization-mediated binding mechanism. For Lecanemab, our data suggest that additional structural contributions beyond the minimal N-terminal epitope are required for binding to aggregated Aβ, which remain to be fully resolved.
Together, this work provides the most comprehensive dataset to date on aggregation-dependent sequence and modification selectivity of Aβ-Abs. By integrating mutational, PTM, and aggregation contexts in a unified experimental framework, we establish a resource that enables rational selection of antibodies for research and diagnostic applications, and offers mechanistic insights that may inform the design and optimization of future therapeutic antibodies in AD.
Related articles
Related articles are currently not available for this article.