Characterisation of cell-scale signalling by the core planar polarity pathway during Drosophila wing development
Abstract
In developing epithelia, cells become planar polarised through asymmetric localisation of the core planar polarity proteins to opposite cell membranes, where they form stable intercellular complexes. Current models differ regarding the signalling mechanisms required for core protein polarisation. Here, we investigate the existence of cell-intrinsic cell-scale signallingin vivoin theDrosophilapupal wing. We use conditional and restrictive expression tools to spatiotemporally manipulate core protein activity, combined with quantitative measurement of core protein distribution, polarity and stability. Our results provide evidence for a robust cell-scale signal, while arguing against mechanisms that depend on depletion of a limited pool of a core protein or polarised transport of core proteins on microtubules. Furthermore, we show that polarity propagation across a tissue is hard, highlighting the strong intrinsic capacity of individual cells to establish and maintain planar polarity.
Related articles
Related articles are currently not available for this article.